HISTOLOGICAL EFFECTS OF HERBICIDE (MACHETE) ON THE KIDNEY OF ALBINO RAT
El-Mahrouky, Fatma S. *; Fatma K. Khidr*; S. M. Abdel- Aal** and H. A. Zedan*
* Plant Protection Research Institute, ARC, Dokki-Giza .
**Faculty of Agric., AL – Azhar Univ., Assuit., Egypt.

ABSTRACT
The histological changes and some parameters in the kidney of albino rat were examined to show the effect of daily 1/4 LD_{50} (500 mg/kg b.w.) of herbicide Machete after 1st, 2nd, 3rd and 4th weeks post treatment. The results indicated a marked significant decrease in body weight, while a significant increase in kidney weight.

Kidney ; Hyperaemia was observed in the cortical blood vessels, while the epithelial cells lining the renal tubules had degenerative changes. Focal mononuclear leucocytic inflammatory cells infiltration was noticed in between the renal tubules. It could be stated that Machete herbicide causes pathogenesis in kidney tissue that could possibly leads to renal dysfunction.

Also, total protein, total bilirubin, uric acid creatinine and urea were changed in plasma of albino rat after oral administration 1/4 LD_{50} herbicide Machete daily, it was observed an increase in total bilirubin, uric acid, creatinine and urea but a gradually decreases was recorded in total protein level at all tested periods, except at 1st week creatinine did not changed compared with control.

INTRODUCTION
Carbamates represent a group of the most widely used pesticides in most countries, butachlor (Machete) and aldicarb used as a herbicide and nematicide in Egypt, which causes considerable hazards not only for man and his domestic animals and other mammals (El-Hady, 1991 and Mattar et al., 1992), but also for aquatic animals including fishes (Sastry and Siddiqui, 1982 and Matter et al., 1992). However, the effects of pesticides on mammalian kidney were scarce although it is considered as one of the most essential target organs of the body. For this reason, the present work has aimed to clarify a real insight into the histological and morphometric changes induced by the sublethal dose of "Machete" on the kidney of treated rats. This may throw more light on its role in increasing the case of kidney failure nowadays.

MATERIALS AND METHODS
Tested compound : butachlor herbicide
Chemical name (lupac), N-butoxy-methyl-2-chloro-2,6-diethyl-acetanilede, N-butoxyethyl)-2-chloro-N-(2,6-diethyl(phenyl)= cetamide (9CI); N-
EI-Mahrouky, Fatma S. et al.

(butoxymethyl)-2- chloro-2-chloro-2, 6-diethyl-acetanilide (8Cl). CAS.

Trade name "Machete".

Dosage: LD50 equal 2000 mg/kg body weight.

This herbicide introduced by Monsanto Co.

Experimental animals:

Male albino rat (120-160 g b.w.) were obtained from Heiwan Breeding Station, Cairo. The animals were given standard diet and water ad libitum, being kept in air conditional room with a 12 hour light / 12 hour dark cycle. After two weeks of acclimatization they were divided into two groups. The first one left as control, and the second group was daily oral, administered 1/4 LD50 for one month. Five animals from control and treated animals were weighed and sacrificed at intervals 1, 2, 3 and 4 weeks post-treatment. Their kidneys were isolated, weighed, fixed, sectioned, stained and examined under microscope.

Blood was collected in heparinized centrifuge, the plasma was obtained by centrifugation at 3000 r.p.m. for 15 minutes and pipetted in clean and dry tubes then kept at -20°C for analysis. Total protein, total bilirubin, uric acid, creatinine and urea were determined according to Henry (1964), Billing et al. (1971), Caraway et al. (1966) and Patton and Crauch (1977).

Statistical analysis was done according to Snedecor and Cochran (1967).

RESULTS

1/4 LD50 of "Machete" herbicide induce a gradually significant decreases in body weight and a constant significant increases in kidney weight at all intervals of the test, Table (1).

Table (1): Effect of herbicide (Machete) on body and kidney weight of albino rats treated with 1/4 LD50/animal daily for 4 weeks.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control mean±S.E.</th>
<th>1st week mean±S.E.</th>
<th>2nd week mean±S.E.</th>
<th>3rd week mean±S.E.</th>
<th>4th week mean±S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>149.4 ±1.6</td>
<td>133.8 ±1.9**</td>
<td>134.2 ±1.6*</td>
<td>136.8 ±3.0*</td>
<td>116.0 ±2.1**</td>
</tr>
<tr>
<td>Kidney weight (g)</td>
<td>0.84 ±0.04</td>
<td>1.07 ±0.03*</td>
<td>1.06 ±0.01**</td>
<td>1.05 ±0.01**</td>
<td>1.07 ±0.01*</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± S.E. of 5 rats.

Regarding the histological effects of 1/4 LD50 herbicide Machete on kidney of albino rat was illustrated in Figs. (2, 3, 4 & 5). There were hyperemic cortical blood vessel (Fig. 2) at one week, hyperemic glomerular...
tuft with degenerated lining epithelium of the renal tubules (Fig. 3) at two
weeks; hyperemic glomerular tuft with degeneration and disfiguration of the
renal tubules lining epithelium (Fig. 4) at 3rd week and focal mononuclear
leucocytic inflammatory cells infiltration inbetween the renal tubules (Fig. 5) at
4 weeks post-treatment.
Table (2) revealed the occurrence of a significant reduction in plasma
total protein after 1/4 LD50 herbicide Machete at 4th week only. While a non-
significant increases were recorded in plasma bilirubin at all tested periods.
Concerning uric acid in plasma, there were a significant increases at 1, 2, 3
and 4 weeks post-treatment.
A non significant increases were recorded in plasma creatinine at all
tested intervals, while a significant increases at 2nd and 4th week post-
treatment in urea after 1/4 LD50 herbicide Machete administration but at the
rest period, the increases were non-significant.

Table (2) Effect of 1/4 LD50 herbicide Machete on total protein, total
bilirubin, uric acid, creatinine and urea in plasma of albino rats.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control Mean ± S.E</th>
<th>1st Mean ± S.E</th>
<th>% Diff.</th>
<th>2nd Mean ± S.E</th>
<th>% Diff.</th>
<th>3rd Mean ± S.E</th>
<th>% Diff.</th>
<th>4th Mean ± S.E</th>
<th>% Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Protein</td>
<td>27.2 ± 2.9</td>
<td>25.2 ± 1.8</td>
<td>-7.4</td>
<td>22.8 ± 1.00</td>
<td>-16.2</td>
<td>22.0 ± 2.1</td>
<td>-19.1</td>
<td>19.6 ± 1.1</td>
<td>-27.9*</td>
</tr>
<tr>
<td>Total Bilirubin</td>
<td>0.32 ± 0.06</td>
<td>0.84 ± 0.60</td>
<td>162.5</td>
<td>0.86 ± 0.03</td>
<td>168.7</td>
<td>1.56 ± 0.13</td>
<td>387.5***</td>
<td>2.50 ± 0.90</td>
<td>681.2***</td>
</tr>
<tr>
<td>Uric acid</td>
<td>3.10 ± 0.40</td>
<td>5.55 ± 0.78</td>
<td>77.4*</td>
<td>7.77 ± 0.39</td>
<td>148.3**</td>
<td>10.2 ± 2.0</td>
<td>229.0**</td>
<td>12.44 ± 1.24</td>
<td>301.3***</td>
</tr>
<tr>
<td>Creatinine</td>
<td>0.90 ± 0.1</td>
<td>0.90 ± 0.90</td>
<td>0.0</td>
<td>1.20 ± 0.12*</td>
<td>33.3</td>
<td>1.45 ± 0.35</td>
<td>61.1</td>
<td>1.50 ± 0.4</td>
<td>66.6***</td>
</tr>
<tr>
<td>Urea</td>
<td>31.6 ± 4.7</td>
<td>37.9 ± 2.5*</td>
<td>19.9</td>
<td>56.2 ± 2.5*</td>
<td>77.8</td>
<td>58.4 ± 2.5</td>
<td>84.8***</td>
<td>65.8 ± 2.7*</td>
<td>108.2</td>
</tr>
</tbody>
</table>

Each value expressed as mean ± S.E of 5 rat.
* P > 0.05 Significant
** P > 0.01 Highly significant
*** P > 0.001 Very highly significant
Fig. 1 - Kidney of rat in control group (H & E X40).

Fig. 2 - Kidney of rat treated and sacrificed after one week showing hyperemic cortical blood vessel (H & E X40).
Fig. 3.- Kidney of rat treated and sacrificed after 2 weeks, showing hyperemic glomerular tuft with degenerated lining epithelium of the renal tubules (H & E X160).

Fig. 4.- Kidney of rat treated and sacrificed after 3 weeks, showing hyperemic glomerular tuft with degeneration and disfiguration of the renal tubules lining epithelium (H & E X160).
El-Mahrouky, Fatma S. et al.

Fig. 5.- Kidney of rat treated and sacrificed after 4 weeks, showing focal mononuclear leukocytic inflammatory infiltration inbetween the renal tubules (H & E X40)

DISCUSSION

The kidneys comprise only 0.5% of body weight, yet they receive 25% of the cardiac output. Thus, it is hardly surprising that toxic environment can damage the kidney and that disease of the kidney affect responses to toxic substance (Laurence and Bennett, 1992).

In the present study, gross findings indicated slight enlargement with the results of Ebert et al. (1992) who found toxic effects in rat after treatment with Trifloral (herbicide) represented by increased renal organ weight. Concurrently, histological changes observed at 1, 2, 3 and 4 weeks after 1/4 LD50 herbicide Machele administration, the cortical blood vessels ad glomeruli were hyperemic, while the epithelial cells lining the renal tubules had degenerative changes. Also, focal mononuclear leukocytic inflammatory cells infiltration was noticed inbetween the renal tubules. These results may be related to plasma potassium level falls, these findings may offer a support to the view speculated by Elwi (1987), who demonstrated impairment of the oxidative phosphorylation processes of the Kreb's cycles and consequently reduced release of energy necessary for the regulation of the concentration of ions in the cells. A loss of intracellular potassium ion is followed by the entry of more sodium ions into the cells. The tendency of the cell to become hypertonic is balanced by the entry of water and the injured mitochondria become swollen and vacuolated and presumably the site of water accumulation. The toxicity of herbicide Paraquat induced swelling of the
tubular epithelial cells and their granular cytoplasm may be related to proteinuria (Curran, 1990).

Meyer et al., (1990) and Damian et al. (1991) emphasized that as a result of severe Paraquat (herbicide) poisoning, renal damage occurs (renal failure). Renal toxicity after Trifluralin (herbicide) treatment was recorded to be injury of proximal tubules and increased incidence of hyaline droplets in the tubular epithelium (Ebert et al., 1992).

El-Hady (1994) revealed that the histological changes in the Arvicanthis niloticus uriniferous tubules following Aldicarb administration included hydropic degeneration, vacuolization vascular congestion, lymphatic cells infiltration and dilated blood vessels. The size and numbers of vacuoles had increased significantly by the advancement of treatment. Also, Abou-Zaid and El-Balshy (1994) revealed that the kidney of mice treated with caffeine showedglomerulonephritis, cloudy swelling, hydropic degeneration and finally necrosis. El-Deeb et al. (1997) reported that the kidney of house sparrow and palm dove after treatment with Lebamide avicide revealed congestion, lesion, hydropic degeneration and necrosis of the renal parenchyma. Also, Abdel-Gawad et al. (2001) found that kidney of house sparrow after 1/4 LD₅₀ camphor leaves ethanol extract revealed congestion with lymphocytic infiltration and fibrosis, while kidney of palm dove showed cloudy swelling. The same observation was recorded by El-Esseny (2002) when studied the effect of chlorphacinone and warfarin (rodenticides) on kidney of albino rats.

Concerning the metabolites changes in plasma, the present results revealed an increase in total bilirubin, uric acid, creatinine and urea but a decrease was recorded in total protein level at all tested periods. These findings are in agreement with El-Mahroury et al. (1997) who studied the effect of repeated 1/16 LD₅₀ calciferol rodenticide on urea, creatinine, cholesterol, uric acid and total bilirubin levels in rat serum during 1, 3, 7, 14, 21 and 28 days post-treatment, it was noticed that the effect was continuous throughout all periods in the case of cholesterol and uric acid, while in urea, creatinine and total bilirubin a significant increase was recorded. Also, Abdel-Khalek (1985) indicated that non-significant changes were observed in the values of serum total bilirubin of chickens affected by flouxanfen rodenticide. Moreover, Al-Sahef (1995) stated that there was no significant change in the urea nitrogen, while total bilirubin and creatinine showed a significant increase in treated toad with Lannate.

REFERENCES

El-Mahrouky, Fatma S. et al.

Damian, F.; B. Frank; H. Winfried; M. Hartmut; E. Sebastian; K. Herbert; A. Conrad; M. Julius; W. Hans and W. Klaus (1991). Failure of radiotherapy to resolve fatal lung damage due to paraquat. Poisoning Chest, 100 : 1145-1165.

الأنث Chargers compartir الطبيعة لمبيد الحشائش ملبي على كلية الفأر الأبيض
فاطمة شحوم المصريَّة*، فاطمة كامل خضر*، شعبان محمد عبد العال*، حلمي علي زيدان* معيد بحوث وдейد الطاقة - مركز البحوث الزراعية - الدقَّة - جزيرة - مصر
* كلية الزراعة - جامعة الأزهر - أسوان - مصر

أجري هذا البحث بهدف دراسة التأثير البيولوجي على كلية الفأر الأبيض بعد تناوله
1/4 الجرعة للنصف مميتة (LD₅₀) لمدة سبع.parentNode. ثم ابتعد بعد أسبوع - أسبوعين - ثلاثة أسابيع - أربع أسابيع من المحمولة حيث ظهرت النتائج أن هناك نقص محسوب في وزن الحمى فيما زاد وزن الكلية زيادة ملحوظة، بالنسبة إلى التغييرات البيولوجية في الكلية. كما أوضحت النتائج أيضاً وجود اختلاف بين الأوعية الدموية في الجزء الخارجي من الكلية (الأقزام) وأيضاً في الكبد. أما بالنسبة للخلايا الطافية البيضاء للاضطراب الكلوي فقد تلاحظ وجود تغيرات انكساسية مع وجود ارتفاع في النسبbis في الخلايا البولية وحيدة النواة. من هذا يتضح أن مبيد الحشائش المذكور أدلى إلى حدوث تغيرات بيولوجية (مرضية) في فصل الكلية مما أدى إلى حدوث نقص كلوي.

أما بالنسبة لقياس البروتين الكلي والبروبيل وليبروتين والكربونات، فإن البروتين في البول، فقد أوضح النتائج أن الجرعة المستخدمة أدلت إلى زيادة في كل من البوليبروتين الكلي والكربونات والنيوكلي وحدها وليبروتين. وأيضاً بالنسبة للبروتين الكلي فإن هناك تغيير في مستوى في كل فترات المحمولة ما عدا الأسبوع الأول بينما لم يحدث تغير في النيوكليات عند مقارنتها بالكمية الغير معامل.