EFFECT OF NEEM AZAL-T ON THE COTTON LEAFWORM
Spodoptera littoralis (Lepidoptera : Noctuidae)
Aly, Somaia E. and Hanan M. Ramadan
Faculty of Agriculture, University of Alexandria, Department of
Economic Entomology

ABSTRACT

The effect of neem azal-T 5% (E.C.) was tested when added to the artificial
diet of the 4th and 6th instar *Spodoptera littoralis* larvae (Lepidoptera: Noctuidae).
Generally higher concentrations of 1.5, 1 and 0.7% caused 100% of accumulated
mortality. The lower concentrations of 0.5, 0.3 and 0.1% caused different percentages
of accumulated mortality. Prolongation of the larval instar period, malformation effects
on larval, pupal and adult stages were observed with lower concentrations.
Keywords: Neem oil, *Spodoptera littoralis* larvae.

INTRODUCTION

The Egyptian cotton leaf worm *Spodoptera littoralis* (Boisd.) attacks a
large diversity of host plants in different countries. In Egypt *S. littoralis* is
considered to be one of the two "key pests" on cotton. Moussa *et al.* (1960)
mentioned that this insect is able to attack about 112 plant species belonging
to 44 families in tropical temperate zones of the old world.
Recently plant extracts gained more attention for controlling many of
serious pests especially in tropical and subtropical countries. Also, they are
biodegradable, very low in mammalian toxicity and potentially compatible with
natural enemies (Kelany, 2001).
One of the implementations of integrated pest management is the
application of new, highly selective pesticide with low side effects on the
natural enemies. Owing to their mode of action, neem derivatives could be
very suitable for integrated pest management (Schmutterer, 1990). They are
primarily feeding poisons for larvae of polyphagous insects. Also, neem
derivatives have been reported as selective natural pesticides with great
effects on insect behaviour, growth and development (Schumetterer, 1988
The efficacy of neem oil against lepidopterous larvae were studied by
Schumetterer, (1990); Salem and Matter, (1991); Abo El-Ghar *et al.*, (1994);
Khail *et al.*, (1994); Mogahed *et al.*, (1997 a & b); Mogahed and El-Gengaithi,
Moreover, the neem oil reduced feeding of oligophagous and polyphagous
lepidopterous larvae. Schumetterer, (1990) stated that adding neem oil in
various concentrations to artificial diet of the gypsy moth gave 100% molting
hibition in 2nd instar larvae. The tested larvae also, showed faded skin and
blackish areas on their bodies before dying. On the other hand, some tested
insects either shriveled and died as prepupae or moul ted into malformed,
nonviable pupae or moul ted to adult with crippled wings.
This study aims to evaluate the insecticidal effects of neem oil (Neem Azal –T 5% EC) in low concentrations against the fourth and sixth larval instars of cotton leaf worm. These effects not only on the direct mortality or growth inhibition but also on the malformation of different stages.

MATERIALS AND METHODS

The mother colony of cotton leaf worm *Spodoptera littoralis* (Boisd.) (Lepidoptera: Noctuidae) was maintained under average laboratory conditions of 27 ± 3°C and 60 ± 5% R. H. The larvae were reared on a meridic diet (Hegazi et al., 1977).

Neem oil was used as Neem Azal-T 5% EC produced by Bayer A. G., Germany. Neem oil was dissolved in current water at concentrations of (1.5, 1, 0.7, 0.5, 0.3, and 0.1%). 5 µl from each concentration was added to 0.075 gm of artificial diet daily. The newly moulted fourth and sixth instar larvae were forced to eat the treated artificial diet. Three replicates each of 30 individuals were used in each concentration plus one control replicate. Until reaching the next instar, larvae were reared individually in plastic cups and covered with gauze cloth.

Treated larvae were checked daily. For mortality and malformation, examined and photographed by using a stereoscopic microscope. Percentages of mortality and malformation were calculated and recorded.

RESULTS AND DISCUSSION

The effect of the Neem azal-T on the cotton leafworm *Spodoptera littoralis* (Boisd) showed that the higher concentrations caused 100% mortality of larvae. However, the lower concentrations caused less percentage of mortality and malformed larvae, pupae and adults.

1-Lethal effects:

Effects of Neem azal-T 5% EC mixed with meridic diet on the mortality of the 4th and 6th larval instars of *S. littoralis* are represented in Table (1).

The data show no mortality in the control of both instars. Neem treatments caused accumulative mortality among *S. littoralis* 4th larval instar varying from 68.66 to 100%. Percentages of mortality were 68.89 ± 1.11, 75.55 ± 1.11, 82.22 ± 1.11, 100, 100 and 100% at concentrations of 0.1, 0.3, 0.5, 0.7, 1.0 and 1.5%, respectively. When 6th instar larvae were fed on diets treated with Neem Azal T concentrations of 0.7, 1.0 and 1.5% a toxic effect was noticed, the highest percentage of mortality recorded was 100%. Same results were obtained by Dimetry et al. (1998) when petroleum ether extract of neem fruits and leaves was used. El-Mesiri (1998) recorded same results when tested extraction of Neem fruits and seeds against 2nd, 4th and 6th instar larvae. The lowest percentages of mortality were 61.11% ± 1.11, 71.11 ± 1.11 and 75.51 ± 1.11%, with concentrations of 0.1, 0.3 and 0.5%, respectively.

On the other hand, certain treated larvae with concentrations of 0.1, 0.3 and 0.5% continued their development to adult stage at the rate of 5.5, 5.5 and 6.6%, respectively. These adults laid unhatched eggs; the latter effect may be classified as a malformation effect. Similar results were reported by Dimetry et al. (1998).
Table (1): Effect of Neem Azal-T 5% E.C. on the mortality of 4th and 6th Instars larvae of Spodoptera littoralis.

<table>
<thead>
<tr>
<th>Concentrations (%)</th>
<th>4th instar</th>
<th>6th instar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.1</td>
<td>68.66 ± 1.11</td>
<td>61.11 ± 1.11</td>
</tr>
<tr>
<td>0.3</td>
<td>75.55 ± 1.11</td>
<td>71.11 ± 1.11</td>
</tr>
<tr>
<td>0.5</td>
<td>82.22 ± 1.11</td>
<td>75.51 ± 1.11</td>
</tr>
<tr>
<td>0.7</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1.5</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table (2) revealed that the treatment of the 4th and 6th larval instars with Neem Azal-T 5% E.C. caused prolongation of the larval duration. The 4th instar lasted for 14 ± 1.08, 15.5 ± 1.32 and 20 ± 1.29 days when treated with concentrations of 0.1, 0.3 and 0.5%, respectively, in compared with 9 ± 0.57 days for the untreated larvae. While in the 6th instar the larval duration were 8.67 ± 1.2, 9.67 ± 1.2 and 10.67 ± 1.2 days, respectively, compared with 6 ± 0.57 days for the control.

Table (2): Effect of Neem Azal-T 5% E.C. on the mean duration of the 4th and 6th Spodoptera littoralis larval instars.

<table>
<thead>
<tr>
<th>Concentrations (%)</th>
<th>Duration (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4th instar</td>
</tr>
<tr>
<td>Control</td>
<td>9 ± 0.57</td>
</tr>
<tr>
<td>0.1</td>
<td>14 ± 1.08</td>
</tr>
<tr>
<td>0.3</td>
<td>15.5 ± 1.32</td>
</tr>
<tr>
<td>0.5</td>
<td>20 ± 1.29</td>
</tr>
</tbody>
</table>

2-Morphological malformations:

Data showed that among the treated 4th larval instar, the average accumulative malformation percentages were 30, 23.3 and 16.6% for the concentrations 0.1, 0.3 and 0.5%, respectively. In the 6th larval instar the percentages of malformed insects were 20, 10 and 10% for the concentrations, 0.1, 0.3 and 0.5%, respectively.

In both larval instars, some treated larvae were dwarfed and shirkled Figure (1), while the others were unable to shed off the moulted skin. Another type of juvenilization as larval-pupal intermediates was observed where the posterior portion of the body only transferred to pupal shape while the anterior portion had larval head capsule and thoracic legs. The juvenilized pupa with brownish pupal tegument appearance in abdomen having trace of prolegs (Figure, 2). Such malformation in pupal stages was recorded by Dimetry et al. (1998). Abnormal pupa without wings or faild to shed of the larval cuticle (Figure, 3).

juvenilized adults appeared as adults faild to shed the pupal cuticle (Figure, 4).
Similar developmental abnormalities were reported on the rice-earcutting caterpillar, *Mythimna separata* and the rice leaffolder, *Cnaphalocrocis medinalis* when treated with partially-purified fractions of neem extracts (Schmutterer, 1988). Neem often modified the development of insects by their influence on the hormonal system, especially on ecdysteroids (Schmutterer, 1990) leading to growth regulatory effects, exhibited by growth inhibition, malformation and mortality (Mordue and Blackwell, 1993). Such effects could be the reason for the mortality of the cotton leaf worm in the present experiment. However, the mortality of the cotton leaf worm could also be due to an anti-feedant effect, which induces starvation and then indirectly causes developmental deviance (Slama, 1978) and thus stimulates a growth inhibitory effect.

![Control and Treatment Larvae](image)

Figure (1): Dwarfing larvae in the last larval instar.
Figure (3): Abnormal pupae failed to shed the larval cuticle.

Figure (2): Juvenilized larval – pupal intermediates (right).

(right), control (left).

Control (left).
Figure (4): Adults failed to shed the pupal cuticle (right), control (left).

REFERENCES

تأثير مادة نيم آزال- ت علي دودة ورق القطن الكبري (رتبة حرشيفية الأجنحة)

سمية السيد علي - حنان محمد رمضان

قسم الحشرات الاقتصادية - كلية الزراعة - جامعة الإسكندرية

تم في هذا البحث تغذية برقات دودة ورق القطن الكبري على بيئة صناعية معاملة بدادة النيم آزال- ت (% Azadirachtin) وهي أحد المستخلصات التجارية لنبات النيم إنتاج شركة بابير الألمانية وقد استعملت هذه المادة في صورة مستحلب في الماء العادي بالتركيزات التالية: 0,1 و 0,5 و 0,2 و 0,1%. وقد تم معاملة العمر الرابع وكذلك العمر السادس سن برقات دودة ورق القطن الكبري بهذه التركيزات. وEventListener على أن التركيزات المنخفضة أدت السويج حدوث تشوهات بالبيرات والعداري وكذلك الحشرات الكاملة و قد تم توضيحها بالصور بينما التركيزات العالية أدت إلى حدوث نسبة موت 100% بالإضافة إلى إطالة في فترة العمر السويج المعامل.

2675