Effect of Maize Planting Dates and Maize Hybrids on The Fall Armyworm Spodoptera frugiperda Populations.

Olyme, M. F. *; M. A. Samy; S. A. Kassem and B. S. Fetoh

Plant protection Research Institute, Agriculture Research Center, Giza, Egypt

ABSTRACT

The fall armyworm (FAW), Spodoptera frugiperda (Smith) is considered one of the most important and most dangerous insect pests that attack maize with great losses in the past few years. With its first appearance in Qotour Center at Gharbia Governatorate, northern Egypt during 2021 and 2022 seasons, it was found that the infestation rate is affected by the type of maize hybrid (White hybrid 321, Hybrid yellow 368). The planting dates (mid-May, early June and mid-June) also affected on its population. The mid-May plantation date recorded the lower infestation rate than other planting dates. The highest population density in both hybrids was recorded in the first June and mid-June. Significant differences were found between the two hybrids in the first and mid-June. The average incidence was ranged from 29.7 ± 7.2 to 67.2 ± 9.3, the highest number recorded on 321 hybrids in mid-June cultivated. At the end of August and the beginning of September, an outbreak of armyworm populations occurred on all plantation dates.

Keywords: Armyworm, Population, Maize

INTRODUCTION

The fall armyworm Spodoptera frugiperda (J.E. Smith) is one of the most dangerous insects pests that attacks maize crops and other field crops worldwide (FAO, 2016; CABI, 2017; CABI, 2018; FAO, 2018). FAW is belong to the lepidopteran pests (Lepidoptera: Noctuidae) with two strains, one infested maize and the second infested rice and grasses (Juárez et al., 2012). FAW considers a socioeconomic environmental transboundary insect which causing very high economic yield losses ranged 20 to 100 percent in the world (Abrahams et al., 2017; Day et al., 2017; Mallapur et al., 2018). In Africa, FAW has been recorded in 2016 and by one year spread in 47 countries (Goergen et al., 2016; Tendeng et al., 2019). Without control methods, FAW has the ability to cause maize damage in 12 African countries with range of 20-53% of losses (Day et al., 2017; Frederic Baudrom et al., 2019; De Groote et al., 2020). In Egypt, FAW recorded in upper Egypt in 2019 attacking maize and sorghum (Mohamed et al., 2021). Maize and grasses are the main hosts for EAW, it can exceed maize with high infestation reach to 100% (Cruz et al., 1999; Hardke et al., 2015; Balana et al., 2019). Further, FAW is recorded on infestation on 353 plant species (Montezano et al., 2018). The incidence of fall armyworm infestation increases with the increase in the age of the maize plants (Wychkyus et al., 2006). The infestation by larvae in the first 40 days of planting maize (Jaramillo-Barrios et al., 2019; Suparth et al., 2021). The planting date of maize affect the infestation rate of the FAW (Cruz et al., 2008). Also, the wther factors affected the interbreeding and population of FAW (Clark et al.2007). In this study, the effect of planting dates on the population dynamics, and the effect of the sensitivity of two hybrids of maize, one is white and the other is yellow was investigated during two seasons 2021 and 2022.

MATERIALS AND METHODS

An experiment was conducted on the effect of planting dates for maize crop on population of the fall armyworm in a research farm located in the area of Qotour center, Gharbia Governatorate. An area of an acre and a half was allocated for cultivation in three different times (mid-May, first-June and mid-June) with two hybrids of maize, the first is the white hybrid 321 and the second was the yellow hybrid 368. The soil has been prepared for plantation and planted with 5000 maize plants for each hybrid, all agricultural operations were carried out, including cultivation, irrigation and fertilization. Direct counting of the number of larvae present on the plants was conducted and the infection percent was determined based on Urbaneja Garcia 2000.

\[
\% \text{ IP} = \frac{\text{Infested plants}}{\text{total plants}} \times 100
\]

Data were analyzed using ANOVA. Difference in rate of development were considered significant when P<0.05 and means separated using Duncan’s multiple test.

RESULTS AND DISCUSSION

Results

Data in Figure (1) show the population density of the fall armyworm S. frugiperda on the yellow maize hybrid 368 during the three plantation dates of 2021 season. The highest peak was recorded on mid-Jun plantation during the 4th week of September with 35 larvae/100 plants infestation. Meanwhile the highest population on mid-May plantation recorded on the 4th week of August and represented by 32 larvae /100 plants. On the first-June plantation date, the highest peak recorded on the 2nd week of August with 45 larvae /100 plants.
Fig. 1. Population density of the fall armyworm *S. frugiperda* on the yellow maize hybrid 368 during the three plantation dates of 2021 season.

Data in Figure (2) show the population density of the fall armyworm *S. frugiperda* on the yellow maize hybrid 368 during the three plantation dates of 2022 season. The highest peak was recorded during mid-June plantation date on the 4th week of September with 91 larvae/100 plants, Meanwhile the highest population was recorded on the 4th week of August during the mid-May plantation and represented by 45 larvae/100 plants. In respect to first-June plantation date, the highest peak recorded on the 2nd week of August with 71 larvae /100 plants.

Fig. 2. Population density of the fall armyworm *S. frugiperda* on the yellow maize hybrid 368 during the three plantation dates of 2022 season.

Data in Figure (3) show the population density of the fall armyworm *S. frugiperda* on white maize hybrid 321 during the three plantation dates of 2021 season. The highest Peak were recorded on mid Jun plantation on the 4th week of September with 73 larvae/100 plant infestation, Meanwhile the highest population on Mid May recorded on the 4th week of August by33 larvae /100 plant. On first Jun, the highest peak recorded on 2nd week of August with 53 larvae /100 plant.

Fig. 3. Population density of the fall armyworm *S. frugiperda* on the white maize hybrid 321 during season 2021 on three plantation dates.

Data in figure (4) show the population density of the fall armyworm *S. frugiperda* on white maize hybrid 321 during the three plantation dates of 2022 season. The highest Peak were recorded on mid Jun plantation on the 4th week of September with 98 larvae/100 plant infestation, Meanwhile the highest population on Mid May recorded on the 4th week of August by 53 larvae /100 plant. On first Jun, the highest peak recorded on 2nd week of August with 53 larvae /100 plant.

Fig. 4. Population density of the fall armyworm *S. frugiperda* on the white maize hybrid 321 during season 2022 on three plantation dates.

Data in Table (1) showed the monthly and annually average numbers ±SE of the fall armyworm, *S. frugiperda* on yellow maize hydride 368 of 2021 and 2022 maize seasons. August by 33 larvae /100 plant. On first Jun, the highest peak recorded on 2nd week of August with 43 larvae /100 plant.

Table 1. Monthly and annually average numbers ±SE of the fall armyworm *S. frugiperda* during the three plantation dates on the yellow maize hydride 386 of 2021 and 2022 maize seasons.

<table>
<thead>
<tr>
<th>Month</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mid May</td>
<td>First Jun</td>
</tr>
<tr>
<td>May</td>
<td>0.0±0.0a</td>
<td>0.0±0.0a</td>
</tr>
<tr>
<td>June</td>
<td>11.0±2.5a</td>
<td>11.5±2.5a</td>
</tr>
<tr>
<td>July</td>
<td>18.5±1.4b</td>
<td>24.0±2.3a</td>
</tr>
<tr>
<td>August</td>
<td>27.5±1.9b</td>
<td>38.0±2.1a</td>
</tr>
<tr>
<td>September</td>
<td>45.0±1.3b</td>
<td>46.7±1.3b</td>
</tr>
</tbody>
</table>

Means followed by the different letters in rows are significant different at 5% level probability.

Data in Table (2) showed the monthly and annually average numbers of the fall armyworm, *S. frugiperda* on white maize hydride 321 during the three plantation dates. The highest average numbers were recorded on Mid-June plantation on September during 2021 and 2022 seasons with an average of 46.7±1.3 and 86.7±2.6, respectively. The population of FAW in the second season was higher than the first season in all plantation dates.

Means followed by the different letters in rows are significant different at 5% level probability.
Table 2. Monthly and annually average numbers ±SE of the fall armyworm *S. frugiperda* on white maize hydride 321 during the different plantation dates of 2021 and 2022 maize seasons.

<table>
<thead>
<tr>
<th>Month</th>
<th>2021</th>
<th>2022</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mid May</td>
<td>First Jun</td>
<td>Mid May</td>
<td>First Jun</td>
</tr>
<tr>
<td>May</td>
<td>0.0±0.0a</td>
<td>0.0±0.0a</td>
<td>0.0±0.0aa</td>
<td>3.0±0.0a</td>
</tr>
<tr>
<td>June</td>
<td>10.±1.6a</td>
<td>5.0±0.0a</td>
<td>0.0±0.0a</td>
<td>14.±2.3c</td>
</tr>
<tr>
<td>July</td>
<td>18.±2.0a</td>
<td>19.±2.4a</td>
<td>28.±3.0a</td>
<td>32.±2.8b</td>
</tr>
<tr>
<td>August</td>
<td>31.±1.3b</td>
<td>36.±1.8b</td>
<td>49.±1.9a</td>
<td>49.±1.7c</td>
</tr>
<tr>
<td>September</td>
<td>0.0±1.1b</td>
<td>43.±1.7a</td>
<td>65.7±2.4b</td>
<td>-</td>
</tr>
</tbody>
</table>

Means followed by the different letters in rows are significant different at 5% level probability.

Data in table (3) showed the total average numbers of the fall armyworm, *S. frugiperda* on in the two hydrides during the three plantation dates. The highest total average recorded on Mid Jun plantation during the two seasons with total average 58.4±9.3 and 67.2±9.5. Also, a significant difference found between mid May plantation and the others plantation dates, also a significant difference found between yellow and white maize on mid may plantation.

Table 3. Annually average numbers ±SE of the fall armyworm *S. frugiperda* on white maize hydride 321 and yellow maize hydride 386 during the different plantation dates of 2021 and 2022 maize seasons.

<table>
<thead>
<tr>
<th>Year</th>
<th>2021</th>
<th>2022</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mid May</td>
<td>First Jun</td>
<td>Mid May</td>
<td>First Jun</td>
</tr>
<tr>
<td>Mid May</td>
<td>14.7±5.9a</td>
<td>23.6±6.9b</td>
<td>15.5±6.3a</td>
<td>27.4±7.5b</td>
</tr>
<tr>
<td>First Jun</td>
<td>25.7±7.0a</td>
<td>41.2±7.8b</td>
<td>22.4±7.2a</td>
<td>49.1±8.4b</td>
</tr>
<tr>
<td>Mid Jun</td>
<td>29.7±7.2a</td>
<td>58.4±9.3b</td>
<td>40.8±8.5a</td>
<td>67.2±9.5b</td>
</tr>
</tbody>
</table>

Means followed by the different letters in rows are significant different at 5% level probability.

As conclusions data from table (1to 3) data indicated that Mid May plantation recorded the lowest population density of the fall armyworm, mid Jun plantation recorded the highest population in both maize hydrides, also the white maize hydride 321 found with higher infestation on Jun plantation than Mid May plantation

Discussion

The fall armyworm found with high monthly and annually averages during the two seasons and can damage the maize production which were agreed with (Cruz et al., 1999, Wyckhuys, 2006, Hardik et al., 2015; Balana et al., 2019 De Groote et al., 2020). The plant age of maize between 20 to 40 day old found with high damages and also the devastating feeding effect became even more severe when maize plant is exposed to prolonged drought which are agreed with (Ayala et al. 2013, Hruska et al.2019, Niassy et al.2021, Folake Bosede Anjonin et al.2022). It can be said that the mid-Jun plantation observed an increase in the average number of FAW, with the entry into the summer months, which are characterized by high temperatures which were agreed with (Cruz et al.2008; Clark et al.2007). The early plantation on May found with the lowest infestation which are agreed with Abd El mageed et al. (2022). The Maize hybrid has an effect on the percentage of infection in early seedling, but there are no significant differences between the hybrids in the case of delay in planting.

REFERENCES

urbaniaj, a. garcia (2000). biología de cirrospilus sp. próximo a lyncus (hym.: eulophidae), ectoparasitoide del minador de las hojas de los cítricos, phylocnistis citrella stainton (lep.: gracillariidae). dinámica e impacto de los enemigos naturales del minador. tesis doctoral, escuela técnica superior de ingenieros agrónomos, departamento de producción vegetal, 1, universidad nacional politécnica de valencia, valencia, españa. 150 pp.

vijayaakshaya, n. kumar, p. yasodha and justin, c.g.l. (2020). seasonal incidence of maize fall armyworm spodoptera frugiperda (j.e. smith) (noctuidae; lepidoptera) in preambular district of tami nadu, india. journal of entomology and zoology studies 2020; 8(3): 01-04

wyckhuys, k. a.g., and o’neil, r. j., (2006). population dynamics of spodoptera frugiperda smith (lepidoptera: noctuidae) and associated arthropod natural enemies in honduran subsistence maize. crop protection 25 (2006), 1180–1190

ผลกระทบ مواعيد زراعة الذرة على أعداد دودة الحشد الخريفية
مصطفى فاروق احمد عليمى، محمود عبدالمجيد سامى، سمير السيد قاسم و بدر الصباح عبدالمنعم فتوح
معهد بحوث وقاية النبات مركز البحوث الزراعية – الدقى – جيزة

الملخص
تعتبر دودة الحشد الخريفية أحد أهم وأخطر الآفات الحشرية الخطيرة التي تهاجم الذرة مع خسائر كبيرة في السنوات القليلة الماضية. مع الظهور الأول لها في مركز قطرب محافظة الغربية شمال مصر خلال موسمي 2021 و 2022، وجد أن معدل الإصابة بالنباتات إلى درجة النزاع (هجين أبيض 321، هجين أصفر 368). كما أن مواعيد الزراعة (منتصف مايو، أول يونيو ومنتصف يونيو) تأثر عليها. سجل موعد الزراعة في منتصف شهر مايو أقل نسبة اصابة بدوة. سجلت أعلى كثافة في هجينين في المزارعة الأولى ومنتصف يونيو. تم العثور على اختلافات كبيرة بين الهجينين في الأول ومنتصف يونيو مزرعة. سجلت الإصابة متوسط تراوح بين 29.7 ± 9.3 و 321 ميجًا في منتصف يونيو المزرعة. في نهاية أغسطس وبفابية سبتمبر، حدث انخفاض في أعداد دودة الحشد الخريفية في جميع مواعيد الزراعة.