Influence of Different Plantations on the Main Piercing-Sucking Insect Pests Attacking Faba Bean and Soybean Plants

Awadalla, S. S.; F. D. AbdAllah; Hala A. K. El-Serafi and Walaa B. F. Badawy

1Economic Entomology Department, Faculty of Agriculture, Mansoura University.
2Plant Protection Research Institute, Sakha Agriculture Research Station, Agriculture Research Center.

ABSTRACT

The present investigation was conducted in the farm of Sakha Agricultural Research Station, Kafr El-Sheikh Governorate during 2015/16 and 2016/17 to determine the influence of sowing dates on the major piercing-sucking insect pests which infested faba bean and soybean plants. On faba bean plants, *Empoasca* spp. ranked in the first category with the highest average number in October cultivated (60.35 ± 12.08 and 89.55 ± 11.29 indiv.) followed by *M. persicae* (37.30 ± 12.08 and 61.85 ± 12.74 indiv.) in both seasons, respectively. Meanwhile, in November implanted *A. craccivora* was recorded the highest average number (72.85 ± 23.86 and 70.45 ± 80.49 indiv.) followed by *Empoasca* spp. (51.15 ± 7.76 and 69.25 ± 12.73 indiv.) in the two successive seasons, respectively. While, in December grown *Empoasca* spp. came in the first category (53.30 ± 10.90 indiv.) in the first season and *M. persicae* observed the first category (63.35 ± 10.95 indiv.) during the second season. *P. solenopsis* was found the lowest average number in the different planting dates at the two successive seasons. On the other side, on soybean plants, *A. gossypii* arranged in the first category in the three plantations and observed the highest average number in the June plantation with values (248.80 ± 48.58and 332.45 ± 67.77 indiv.) followed by April plantation(149.05± 36.08 and 172.10 ± 38.93 indiv.) and May plantation (117.35 ± 26.67 and 172.4 ± 34.44 indiv.); in both seasons, respectively. Number of *B. tabaci* came in the second category in the three cultivated with the highest values in the June plantation with (216.50 ± 45.11 and232.5 ± 53.36 indiv.) followed by April plantation(143.85 ± 30.77 and 172.00 ± 32.97 indiv.) and May plantation (63.05 ± 15.69 and 87.05 ± 19.10 indiv.) during the two successive seasons, respectively.

Keywords: plantations dates, piercing-sucking pests, faba bean, soybean.

INTRODUCTION

Leguminous plants are considered an important agricultural crop which used as human feed among these plants faba bean and soybean. The faba bean, *Vicia faba* (L.) it is the most important commercial crop grown worldwide. It is one of the promising pulse crops, which can play an important role in increasing legume production in Egypt. Seeds are used for people nutrition as seeds have 28% protein, 58% carbohydrate and 2% fat (Köpke and Nemecek 2010). It can be used as vegetables, green or dried, fresh or canned. Faba bean has been comes on the main menu as a meat extender or substitute (Ebadahe et al., 2006). It has also useful the new reclaimed land (Al-Antary et al., 2007). Plants faba bean are infestation by many from insect pests which cause serious damage, e.g. *Aphis craccivora* (Koch.), *Empoasca* spp. and *Nezara viridula* L. Which cause economic losses to the crop (Abdallah et al., 2000 Mohamed and Slman, 2001and Awadalla et al., 2014).

Soybean, *Glycine max* (L.) is one of the bulk important leguminous food crop in many countries. It plays a major role in many food industries for people and animals. It is source of major plant protein sources, has a good nutritional quality and considers as one of the richest sources of vegetable oils (18-22%). (Badenhopf and Kackler, 1971). Soybean plants attract numerous insect pests during their growing seasons. These insects cause economic damage as a result of feeding (Shataa, 2010). The most serious insect pests are the whiteflies, (*Bemisia* spp.), Aphids (*Aphis gossypii* Glover), Jassids (*Empoasca lybica*), the green stink bug (*Nezara viridula* L.) which cause significant losses in Soybean yield, quality and germination percentage (Saleem 1999). However, the whiteflies, *Bemisia tabaci*, (Genn) causes serious damage on Soybean plant juice or indirectly by viral diseases transition (Gamieh and El-Basuony, 2001, Salman et al., 2002, Magouzet al., 2006 and El-Samahy and Saad, 2010). The preferred host plants and planting dates are achieves benefit in the field of pest insects control especially in IPM programs for different insect pests infesting faba bean or soybean plants (Awadalla et al., 2011, Awadalla et al., 2014). So, the objective of this experimental was for known the effectiveness of cultivation dates on the population numbers of the major piercing-sucking insect pests infestation faba bean and soybean plants.

MATERIALS AND METHODS

Effect of sowing dates on the main piercing-sucking insect pests

1. On faba bean crop

The present experiments were conducted in the farm of Sakha Agricultural Research Station, Kafr El-Sheikh region to study impact of sowing dates on the major insect pests and their associated predatory insects. Seeds of sakha 4 faba bean variety were implanted in three consecutive dates at 30 days intervals i.e. the first of September, the first week of October and the first week of December in the two grown seasons (2015/2016 and 2016/17). The area was about 1600 m² divided to three parts (each part 400 m² divided to four replicates, each replicate was 100 m²). Samples were taken weekly after sowing dates about one month until the harvesting time:

The impact of sowing dates on dinestey of aphids, leaffoppers and the cotton mealybug on the involved varieties, weekly sample of 100 leaflets (25 leaflets from each replicate) of each variety were chosen at random and number of this insect were directly recorded in the field.

The impact of sowing dates on number of the green stink bug and predators on all of varieties weekly sample of 100 plants (25 plants from each replicate) of each variety were chosen at random and number of this insect were directly recorded in the field. Numbers of pests and predators were identified, recorded, and counted.

2. on soybean crop

Seeds of Giza11 soybean variety grown in three different times at 30 days intervals i.e. the first of April, the first week of May, the first of June in the two successive
seasons (2016 and 2017). The area was about 1600 m² divided to three parts (each part 400 m² divided to four replicates, each replicate was 100 m²). The agricultural practices were without any insecticidal treatments in both seasons. Samples were taken weekly from sowing dates about one month until the harvesting time:

The population numbers of aphids and leafhoppers on the involved varieties, weekly sample of 100 leaflets (25 leaflets from each replicate) of each variety were chosen at random and number of this insect were directly recorded in the field.

Impact of sowing dates on density of the green stink bug and predators on the involved varieties weekly sample of 100 plants (25 plants from each replicate) of each variety were collected randomly and number of this insect were directly recorded in the field. Numbers of pests and predators were identified, recorded, and counted.

RESULTS AND DISCUSSION

1. Effect of different plantation on the main piercing -sucking insect pests attacking sakha 4 faba bean variety

Results illustrated in Table (1) indicated that the average numbers of the major piercing -sucking insect pests infestation sakha 4 faba bean variety in different sowing dates in the first season 2015/16. Data showed that, *Empoasca spp.* and *M. persicae* observed with highest numerical intensity in October cultivated and represented by (60.35 ± 12.08 and 37.30 ± 12.37 indiv., respectively). While, *A. craccivora* and *Empoasca spp.* observed the highest number in November plantation (72.85 ± 23.86 and 51.15 ± 7.76 indiv., respectively). Meanwhile, *Empoasca spp.* and *M. persicae* in the first category (53.30 ± 10.90 and 38.65 ± 6.94 indiv., respectively). Statistical analysis indicated that there were significant differences between the different sowing dates in the first season.

<table>
<thead>
<tr>
<th>insect pests</th>
<th>Average number of pests ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>October plantation</td>
</tr>
<tr>
<td>A. craccivora</td>
<td>20.15 ± 4.16 b</td>
</tr>
<tr>
<td>M. persicae</td>
<td>37.30 ± 12.37 a</td>
</tr>
<tr>
<td>Empoasca spp.</td>
<td>60.35 ± 12.08 a</td>
</tr>
<tr>
<td>N. viridula</td>
<td>10.10 ± 2.14 b</td>
</tr>
<tr>
<td>p. solenopsis</td>
<td>5.15 ± 1.09 b</td>
</tr>
</tbody>
</table>

Values bearing the same small letters in a raw are not significantly different, according to Duncan's Multiple Rang Test at 0.05 probability level.

As a conclusion, the obtained data ranked in Tables (1 and 2) refers to, *Empoasca* spp. ranked in the first category and observed the highest average number in October grown (60.35 ± 12.08 and 89.55 ± 11.29 indiv.) followed by *M. persicae* (37.30 ± 12.08 and 61.85 ± 12.74 indiv.) during the two seasons, respectively. Meanwhile, in November plantation *A. craccivora* came in the first category and recorded the highest average number (72.85 ± 23.86 and 270.45 ± 80.49 indiv.) followed by *Empoasca* spp. (51.15 ± 7.76 and 69.25 ± 12.73 indiv.) in the two successive seasons, respectively. While, in December sowing *Empoasca* spp. observed in the first category (53.30 ± 10.90 indiv.) in the first season and *M. persicae* recorded the first category (63.35 ± 10.95 indiv.) in the second season. *p. solenopsis* showed in the last category and recorded the lowest average number in the different planting dates in both the seasons. Statistical analysis indicated that there were significant differences between the different sowing dates in the two successive seasons.

These results are in consistent with those of Awadalla *et al.* (2011) who indicated the population density of *E. discipiens* (46.57 ± 2.21 and 59.07 ± 3.72 nymphs / 50 leaflets) was highest in the summer cultivated. in the two seasons of study, respectively. Beside that there are significant differences among plantation dates and the population fluctuation of *A. craccivora* and *Empoasca spp.* while non-significant differences were found among sowing dates and the average number of *N. viridula*. El-Mashaly (2013) in Egypt who mentioned that in the second season the maximum average number of *A. craccivora* was observed in first of November implanted. Beside, *N. viridula* observed the highest population number in the mid of November at two seasons. The maximum average number of *Empoasca spp.* was showed in the first of October plantation in the first season.

2. Impact of different plantation on the main piercing -sucking insect pests attacking Giza 111 soybean variety:

Results illustrated in Table (3) indicated that the population numbers of the important piercing -sucking insect pests attacking Giza111 soybean variety in different
plantation dates in the first season 2016. These results indicated that, A. craccaivora and B. tabaci observed the highest population number in the three sowing dates (April& May&June) and represented by (149.05 ± 36.08 and 143.85 ± 30.77 indiv. & 117.35 ± 26.67 and 63.05 ± 15.69 & 248.80 ± 48.58 and 216.50 ± 45.11 indiv., respectively). There were significant differences between the different sowing dates at the first season.

Table 3. Impact of planting dates on the average numbers of the main piercing - sucking insect pests attacking Giza111soybean variety during the first season 2016.

<table>
<thead>
<tr>
<th>insect pests</th>
<th>Average number of pests ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>April plantation</td>
</tr>
<tr>
<td>Aphis gossypii</td>
<td>149.05± 36.08 b</td>
</tr>
<tr>
<td>Bemisia tabaci</td>
<td>143.85 ± 30.77 b</td>
</tr>
<tr>
<td>Empoasca spp.</td>
<td>25.30 ± 5.21 a</td>
</tr>
<tr>
<td>Nezara viridula</td>
<td>12.65 ± 2.72 a</td>
</tr>
</tbody>
</table>

Values bearing the same small letters in a raw are not significantly different according to Duncan’s Multiple Rang Test at 0.05 probability level.

Data arranged in Table (4) showed the population numbers of the main piercing - sucking insect pests attacking Giza111 soybean variety in different plantation dates at the second season 2017. These results revealed that, A. craccaivora and B. tabaci observed the highest population density in the three planting dates (April& May&June) and represented by (172.10 ± 38.93 and 167.4 ± 34.44 and 87.05 ± 19.10 & 332.45 ± 67.77 and 232.5 ± 53.36 indiv., respectively). There were significant differences between the different sowing dates in the second season.

Table 4. Impact of planting dates on the average numbers of the main piercing - sucking insect pests attacking Giza111soybean variety during the second season 2017.

<table>
<thead>
<tr>
<th>insect pests</th>
<th>Average number of pests ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>April plantation</td>
</tr>
<tr>
<td>Aphis gossypii</td>
<td>172.10 ± 38.93 b</td>
</tr>
<tr>
<td>Bemisia tabaci</td>
<td>172.00 ± 32.97 b</td>
</tr>
<tr>
<td>Empoasca spp.</td>
<td>23.86 ± 5.34 a</td>
</tr>
<tr>
<td>Nezara viridula</td>
<td>12.75 ± 2.86 ab</td>
</tr>
</tbody>
</table>

Values bearing the same small letters in a raw are not significantly different according to Duncan’s Multiple Rang Test at 0.05 probability level.

As a conclusion, the obtained results arranged in Tables (2 and 4) showed that, A. gossypii arranged in the first category and observed the highest average density in the June sowing and represented by (248.80 ± 48.58 indiv. and 332.45 ± 67.77 indiv.) followed by April plantation (149.05 ± 36.08 and 172.10 ± 38.93 indiv.) and May plantation (117.35 ± 26.67 and 167.4 ± 34.44 indiv.) in the two successive seasons, respectively. While, B. tabaci observed in the second category and recorded the highest average number in the June plantation and represented by (216.50 ± 45.11 and 232.5 ± 53.36 indiv.) followed by April plantation (143.85 ± 30.77 and 172.00 ± 32.97) and May plantation (63.05 ± 15.69 and 87.05 ± 19.10 indiv.) at the two successive seasons, respectively. Data analysis revealed that there were significant differences between the different sowing dates at both seasons.

These results are in similar with those of Meena and Sharma (2006) in India found that the population numbers of pod borers increased in late soybean cultivation. Helalia et al. (2011) observed that cowpea cultivation late on April 15 had the lowest population numbers and infestation rate with Etiella zinckenella (Tr.); while recorded the highest infestation rate in late plantation (May 15). Abdallah (2012) in Egypt who found that soybean grown late on April 15 had the lowest population abundance and infestation percentage with B. tabacia and aphid while the highest infestation percentage recorded in late plantation (June 1) during the two seasons 2007 and 2008.

REFERENCES

T. urticae (L.); and E. zinckenella (Say). All cultivars were inoculated with B. tabaci and B. dorsalis. The results showed that T. urticae and E. zinckenella caused significant damage to the cowpea cultivars. The highest damage was observed in the cv. Sudan. The results also indicated that the cowpea cultivars differed in their susceptibility to B. tabaci and B. dorsalis. The cv. Sudan was the most susceptible to both pests, while the cv. Al-Shabab was the least susceptible. The results of this study can be useful for farmers and researchers in selecting the most resistant cowpea cultivars.

References:

T. urticae (L.) and E. zinckenella (Say.) are two important insect pests that cause significant damage to cowpea crops. This study aimed to evaluate the effect of sowing dates on the infestation rate of cowpea with these two pests. Three cowpea cultivars, Sudan, Al-Shabab, and Al-Hakem were used for this study. The results showed that the infestation rate of cowpea with T. urticae and E. zinckenella increased with the increase in sowing date. The cv. Sudan was the most susceptible to both pests, while the cv. Al-Shabab was the least susceptible. The results of this study can be useful for farmers in selecting the appropriate sowing date for their cowpea crops to reduce pest damage.

References:

