
Ismail, Sh. A. A.; F. M. Abou Senna and M. Abed

1 Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza.
2 Zoology and Entomology Department, Faculty of Science, Al-Azhar University, Cairo.

ABSTRACT

The effect of attractive materials and several application control methods of poisonous baits on the efficacy of Agrinate and Gastrotox against Monacha cartusiana snail were studied under field conditions. Results revealed that sugarcane syrup had the upper hand in increasing reduction percentages of M. cartusiana followed by (mixture of sugarcane syrup with yeast) and Birell syrup (barley syrup) while the yeast alone had the lowest reduction percentage. Regarding to the evaluation of three application control methods of poisonous baits for (Gastrotox and Agrinate) it gave different results. The hand sowing of Gastrotox is the best method followed by stack under plant while application on plastic pieces has the lowest reduction percentages. Conversely, application of Agrinate on plastic pieces gave the highest reduction percentage while hand sowing was the lowest one. Finally it cloud be recommended that application of Agrinate (prepared bait) on plastic pieces and hand sowing of Gastrotox (ready baits) were the best methods for controlling land snail under field conditions.

INTRODUCTION

Molluscs are the second huge phylum of the animal kingdom, forming a major part of the world fauna (Lush, 2007). So, they are considered one of the most successful phyla among the animal kingdom. Gastropods are the most successful molluscs which have invaded land (Smith and Kershaw, 1979). In Egypt, land snails have been increased and spread rapidly in most Governorates. They caused considerable damage in field of vegetables and fruit crops as well as ornamental plants where they find the optimal condition for survival and reproduction (Kassab and Daoud, 1964). In Sharkia Governorate, land snails considered one of the most injurious to crops causing severe damage in vegetables and field crops as well as orchards (Ismail, 1997, Shetaia et al., 2009, Ismail et al., 2011 and Lokma, 2013). Gastropods use the chemical sense as a principle modality for detection of distant objects in the environment. Chemoreception also allows for precise discrimination between substances that are apparently indistinguishable by the other modalities (Croll, 1983). Chemical control of snail populations through the application of molluscicides remained the most effective method, particularly over large areas. Conventional pesticides especially carbamates are successfully used in Egypt as well as in many other countries, as sprays or baits to control these pests Miller et al., (1988).

This study aim to through light on the role of the synergists (attractive material) in improving the efficacy of pesticide and to find the best application control methods of poisonous baits in controlling land snails under field conditions.

MATERIALS AND METHODS

1- Pesticides used.
A- Agrinate 24% SL (methomyl).
B- Gastrotox 5% EG (metaldehyde).

2- Impact of attractive material on efficacy of Agrinate under field conditions.

This field trial was carried out in Egyptian clover field, highly infested with M. cartusiana snails at Kafr Mohsen village, El-Ibrahimia district, Sharkia Governorate during the growing season in 2014. Poisonous baits were prepared by mixing 90 parts of wheat bran+5 parts of tested attractive materials (sugarcane syrup, yeast, Birell syrup and mixture of sugarcane syrup with yeast) + 5 parts of Agrinate and then mixed with adequate water. About 100g of poisonous baits were offered on plastic pieces 25x25cm. Each treatment was replicated 3 times. Control treatment was prepared using wheat bran baits without any chemicals. Number of a live snail was recorded before application and after 1, 3, 7, 14 and 21 post treatment. Reduction percentages were calculated according to formula giving by Henderson and Tilton (1955). The obtained data was statistically analyzed by L.S.D using Costat programe (2005).

3- Evaluation of some application control methods against M. cartusiana snails under field conditions.

This field trial was carried out during March 2015 in a field cultivated with Egyptian clover and infested with M. catusiana snails at Hehia Elbalad, Hehia district, Sharkia Governorate. The field was monitored before application to determine an area, which was homogeneously infested with M. cartusiana. Two types of poisonous baits were used. Gastrotox which are pellets ready to use and Agrinate poisonous bait which are prepared prior to application as follow: (5 parts of Agrinate + 90 parts of wheat bran and 5 parts of sugarcane syrup). Baits were applied at three application methods: hand sowing, under plant stack (Takbeesh) and piles on plastic pieces. The area was divided into seven plots separated by untreated plots. One of these plots for control and the other six plots for the other treatments. In hand sowing the ready pellets or prepared poisonous baits were broadcast evenly over the surface of the appropriate plots by hand. On the other hand the other two methods were repeated five times on each replicates. The number of dead and alive snails was recorded at five replicates (50x50cm) before application and 1, 3, 7, 14 and 21 after application. Reduction percentages were calculated according the formula giving by Henderson and Tilton (1955). The obtained
RESULTS AND DISCUSSION

1- Effect of attractive materials on the efficacy of Agrinate against M. cartusiana snail under field conditions.

The effect of attractive materials (sugarcane syrup, yeast, Birell syrup and mixture of sugarcane syrup with yeast) on the efficacy of Agrinate against land snail M. cartusiana was studied under field conditions at Kafr Mohsen village, El-Ibrahimia district, Sharkia Governorate during 2014. Data in Table (1) revealed that Agrinate alone showed highest initial effect (54.14%) against M. cartusiana followed by sugarcane syrup, Birell syrup, yeast and the mixture of sugarcane syrup with yeast. Their values of initial effect were 53.24, 48.27, 46.54 and 44.16%, respectively. Mixture of sugarcane with yeast have the upper hand in residual effect which the reduction percentage recorded (80.62%), followed by sugarcane, Birell syrup, Agrinate alone and yeast which gave 78.76, 75.32, 66.78 and 64.27%, respectively. Regarding to the general mean it’s obvious that sugarcane syrup gave the higher effect followed by mixture of sugarcane syrup with yeast, Birell syrup and Agrinate alone which gave 68.55, 66.04, 64.5 and 61.74% while the yeast was the lowest one with (57.18%) reduction, respectively.

These results agree with those reported by plenty of authors. Moens and Fraselle, (1980) reported that fermenting barley malt is very attractive to Deroceracea reticulatum. Frain, (1981) suggested that the attractiveness of beer lay in the sediment and that the fermentation product (a mixture of yeast cells and wort pressed from the vats after fermentation) was more attractive than the beer. Asran (1994) indicated that sugar-cane syrup proved to be the most attractive additive substance followed by molasses, while vanilla was the lowest attractant in this respect. Mohamed (1994) reported that, sugar-cane syrup and molasses are considered the most promising additives mixed with poisonous baits in controlling snails and slugs. Abd El-Hamid (1996) reported that proline is the preferred attractant for Biomphalaria alexandrina and suggested that this high attraction of proline may be due to the fact that it is released from the snails into the surrounding water as a signal. Abd El-Aal and Hamed (2010) found that, wheat bran with sugar-cane syrup recorded the highest percentage in numbers of attracted Eobania vermiculata and M. cartusina. On the other hand when used wheat bran with dry yeast showed the lowest percentage of attraction for both snail species in this respect.

In contrast of these results Mahrous et al., (2002) found that neither the tested carrier materials nor attractive materials showed significant increase in reducing numbers of M. cartusiana when they applied with fenamiphos as poisonous baits under filed conditions. Arafa, (2006) reported that yeast powder was more suitable material for attractive M. cartusiana snails while vanelia was the lowest one. Ismail, (2009) revealed that Birell syrup showed high effect on the efficacy of methomyl against M. cartusiana than sugar cane syrup when fine wheat bran was used as a carrier materials. As a conclusion, the author herein thinks that fermentation of sugarcane syrup or mixture of sugarcane syrup and yeast produced amino acids and carboxylic acids which can be attracted more numbers of M. cartusiana so, contact ability (the likelihood of contact between snail and poisonous bait), acceptability (the likelihood of commencing to feed once contact is made) and palatability (effects of the formulation, including the active ingredient, on the length of a meal once started) may be increased. Therefore the amount of molluscicide enter snail will be arise.

Table 1. Effect of attractive materials on the efficacy of Agrinate against land snail M. cartusiana under field conditions.

<table>
<thead>
<tr>
<th>Attractive materials</th>
<th>1 day</th>
<th>3 days</th>
<th>Initial effect</th>
<th>7 days</th>
<th>14 days</th>
<th>21 days</th>
<th>Residual effect</th>
<th>General mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrinate alone</td>
<td>33.55</td>
<td>74.78</td>
<td>54.14</td>
<td>75.70</td>
<td>64.21</td>
<td>60.44</td>
<td>66.78</td>
<td>61.74</td>
</tr>
<tr>
<td>Sugarcane syrup</td>
<td>37.88</td>
<td>68.60</td>
<td>53.24</td>
<td>88.06</td>
<td>79.80</td>
<td>68.42</td>
<td>78.76</td>
<td>68.55</td>
</tr>
<tr>
<td>Sugarcane syrup +yeast</td>
<td>34.56</td>
<td>53.75</td>
<td>44.16</td>
<td>86.11</td>
<td>84.34</td>
<td>71.42</td>
<td>80.62</td>
<td>66.04</td>
</tr>
<tr>
<td>yeast</td>
<td>29.91</td>
<td>63.16</td>
<td>46.54</td>
<td>76.09</td>
<td>63.16</td>
<td>53.57</td>
<td>64.27</td>
<td>57.18</td>
</tr>
<tr>
<td>Birell syrup</td>
<td>33.09</td>
<td>63.45</td>
<td>48.27</td>
<td>83.97</td>
<td>75.33</td>
<td>66.66</td>
<td>75.32</td>
<td>64.5</td>
</tr>
<tr>
<td>L.S.D at 0.01</td>
<td>0.026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2- Effect of different application methods on the efficacy of Agrinate and Gastrotox against Monacha cartusiana snails.

Influence of different application of Gastrotox (ready pellet baits) and Agrinate (prepared baits) in controlling of M. cartusiana were evaluated under field conditions:

In this experiment Gastrotox and Agrinate were applied at three application methods hand sowing, stack and on plastic pieces. Data in Table (2) revealed that reduction percentages were significantly influenced by pesticides used and its application methods. In the case of Gastrotox pellets, the hand sowing application had the upper hand on the reduction percentage which recorded 66.94 and 92.88% for initial and residual effect, respectively. On the other hand stack under plant and on plastic pieces application recorded the initial effect were recorded (65.04& 56.34%), respectively. Concerning residual effect, the reduction percentages reached 77.70 and 73.90% for stack and on plastic pieces applications. Conversely, hand sowing application for prepared baits (Agrinate) is the lowest one which the reduction percentages recorded 16.88 and 4.21% for initial and residual effect, respectively. Regarding on plastic pieces application it reach 55.88 and 64.59% for initial and residual effect, respectively.
followed by stack application which recorded 28.23 and 51.56% for initial and residual effect, respectively. General mean of reduction percentages for three application methods on plastic pieces, stack under plants and hand sowing were (61.10, 42.23 and 9.28%) and (73.9, 77.7 and 82.50%) for Agrinate and Gastrotox, respectively.

Generally, it can be concluded that hand sowing is the best method of Gastrotox application (as ready baits) conversely application of Agrinate (as prepared baits) on plastic pieces had the upper hand in increasing the efficacy. These results agree to certain extent with those reported by many authors. Barker et al., (1991) reported that molluscicides direct against terrestrial gastropods are only occasionally delivered as spray or dusts but are more usually deployed in baits. Lokma (2013) found that under field conditions the percent reduction in numbers of M. cartusiana snail was markedly increased with hand sowing compare with other two methods (plant stack and put on plastic pieces).

Finnaly, Ismail et al., (2014) found that methomyl poisonous baits were more effectiveness than spray technique. Moreover when poisonous baits were put as piles on plastic pieces was the best technique to reduce numbers of M. cartusiana snails than under plant stock (Takbeesh) and hand sowing, in Egyptian clover fields.

As a conclusion, the author herein thinks that the reduction percentage of metaldehyde will be arise when applied by hand sowing technique this may be due to increasing the opportunity of contact between snail and ready pellets of Gastrotox.

Table 2. Effect of different application control methods on the efficacy of Agrinate and Gastrotox against Monacha cartusiana under field conditions.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Technique of application</th>
<th>Reduction percentage as indicated days</th>
<th>General mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 day</td>
<td>3 days</td>
</tr>
<tr>
<td>Agrinate</td>
<td>On plastic pieces</td>
<td>35.85</td>
<td>75.91</td>
</tr>
<tr>
<td></td>
<td>Stack (Takbeesh)</td>
<td>17.21</td>
<td>39.24</td>
</tr>
<tr>
<td></td>
<td>Hand sowing</td>
<td>10.29</td>
<td>23.46</td>
</tr>
<tr>
<td>L.S.D at 0.01</td>
<td></td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>Gastrotox</td>
<td>On plastic pieces</td>
<td>49.04</td>
<td>63.64</td>
</tr>
<tr>
<td></td>
<td>Stack (Takbeesh)</td>
<td>61.93</td>
<td>68.14</td>
</tr>
<tr>
<td></td>
<td>Hand sowing</td>
<td>59</td>
<td>74.87</td>
</tr>
<tr>
<td>L.S.D at 0.01</td>
<td></td>
<td>0.030</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES


Costat (2005). Version 6.311, Copyright(c), CoHort Software, 798 Lighthouse Ave. PMB 320, Monterey, CA, 93940, USA.


